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Abstract
By introducing a total-energy or a momentum cut-off in the Gaussian–
Ginzburg–Landau (GGL) approach for layered superconductors, the previous
calculations of the in-plane paraconductivity, the fluctuation induced
diamagnetism and the ratio between both observables are extended to the
high-reduced-temperature region (typically for reduced temperatures, ε ≡
ln(T /Tc0), above 0.1), where the short-wavelength fluctuation effects may
be important. As a first check of their interest, these theoretical results are
used to briefly analyse the experimental data recently obtained in optimally
doped YBa2Cu3O7−δ samples. This comparison strongly suggests the adequacy
of a total-energy cut-off to explain the observed high-reduced-temperature
behaviour of the thermal fluctuations in copper oxide superconductors.

1. Introduction

It is now well established that many of the properties of the so-called high-temperature cuprate
superconductors (HTSC) are appreciably affected above their superconducting transition
temperature, Tc0, by the presence of Cooper pairs created by thermal fluctuations [1]. In
turn, these thermal fluctuation effects may be used as a useful tool to access various central
parameters of any microscopic or phenomenological description of these superconductors,
including their superconducting coherence length amplitudes in all directions [1, 2]. Two of
the observables best adapted to analyse these thermal fluctuations in HTSC are the in-plane
paraconductivity (which affects the electrical conductivity parallel to the superconducting
CuO2 layers),
σab, and the fluctuation induced diamagnetism (for the magnetic field applied
perpendicularly to the superconducting layers),
χab. In HTSC, these observables are among
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the ones with the highest amplitude relative to their normal or background behaviours [1, 2].
This is indeed a very important experimental advantage. However, in multilayered HTSC, with
N superconducting CuO2 layers per periodicity length, s, the analyses of both magnitudes
are made difficult by their dependence on various parameters which are not always well
settled, including the relative Josephson coupling strength between adjacent superconducting
layers [1, 2]. Such a dependence may be easily calculated on the grounds of the so-called
Gaussian–Ginzburg–Landau approach, the resulting expressions being [2, 3]


σab(ε) = NeAAL
ε

(
1 +

BLD

ε

)−1/2

(1)

and


χab(ε)

T
= NeAS

ε

(
1 +

BLD

ε

)−1/2

(2)

where Ne is an effective number of independent fluctuating superconducting CuO2 layers
per periodicity length, ε ≡ ln(T /Tc0) is the reduced temperature, AAL ≡ e2/16h̄s is the
Aslamazov–Larkin paraconductivity amplitude, e is the electron charge, h̄ is the reduced
Planck constant, BLD ≡ [2ξc(0)/s]2 is the Lawrence–Doniach (LD) parameter which
controls the dimensionality of the thermal fluctuations in single-layered materials, ξc(0)
is the superconducting coherence length amplitude in the c-direction (perpendicular to the
superconducting layers), AS ≡ µ0πkBξ

2
ab(0)/3φ

2
0s is the Schmidt diamagnetism, µ0 is the

vacuum magnetic permeability, kB is the Boltzmann constant, ξab(0) is the in-plane coherence
length amplitude and φ0 = h̄π/e is the magnetic flux quantum. Equation (2) applies in
the weak magnetic field limit (also called Schmidt-limit). This last limit corresponds to the
condition h ≡ H/Hc2(0) � ε, where Hc2(0) is the upper critical magnetic field amplitude
with H applied perpendicularly to the superconducting CuO2 layers.

In spite of the existence of these explicit expressions of
σab(ε) and
χab(ε), the presence
in equations (1) and (2) of BLD and, mainly, of Ne (which, in particular, depends on the
relative Josephson coupling strength between adjacent layers [2, 3]) introduces, as noted before,
important ambiguities when analysing separately the experimental results on the in-plane
paraconductivity and on the fluctuation induced diamagnetism in multilayered HTSC [1–4].
However, as was recognized earlier [4], some of these complications may be easily overcome
by using the relationship between both effects, which may be written (in MKSA units) as [2–5]


χab(ε)

T
σab(ε)
= 16µ0kBξ

2
ab(0)

3πh̄
= 2.79 × 105ξ 2

ab(0). (3)

This relationship does not depend on Ne (or, equivalently, on a ‘not well defined’2 effective
periodicity length), but it is also ε-independent. Actually, it depends only on the in-
plane coherence length amplitude. As a consequence, equation (3) has already provided
one of the most direct and reliable checks of the applicability to the HTSC of the GGL-
like approaches in the reduced temperature region bounded by 10−2 � ε � 10−1 [2–
5]. Moreover, equation (3) also provides one of the most reliable ways to determine the
superconducting coherence length amplitude in the ab-plane in HTSC, a central parameter
for any description of the superconductivity in these materials and that, due to the presence of

2 Some of these difficulties are stressed in [1] p 325: ‘Quantitative comparisons between the LD theory and the real
materials are problematic because the crystallographic unit cell typically contains two or more inequivalent CuO2
planes which, in principle, would require a generalization of the LD model; thus, even the appropriate choice of
interplane spacing s in the model is not well defined. Moreover, it has proved difficult to obtain a consensus on
accurate experimental values of ξi because they are inferred from Hc2(T ) data, and Hc2 is poorly defined because of
fluctuation rounding of the transition in high-temperature superconductors.’
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thermal fluctuations, is difficult to measure using other types of experiment2. Complementarily,
the agreement at a quantitative level of equation (3) with the experimental results obtained in
different HTSC compounds in this ε-region was the first experimental demonstration of the
absence of appreciable indirect (Maki–Thompson and DOS) fluctuation effects on the in-plane
paraconductivity, a result in turn related to the unconventional (non 1s0) pairing state in these
superconductors [2–5]. It was observed earlier, however, that equation (3) applies only in the
reduced temperature range bounded by 10−2 � ε � 10−1 [2–5]. In fact, these two limits of
validity in reduced temperature are very general: the failure for ε � 10−2 may be attributed
to the penetration in the so-called full-critical region. This reduced temperature agrees quite
well with the so-called Levanyuk–Ginzburg reduced temperature, εLG, which provides an
estimation of the frontier between the mean-field and the full-critical regions [6]. In fact,
the ε-dependence of
χab(ε)/(T
σab(ε)) observed experimentally for reduced temperatures
below 10−2 agrees, at least at a qualitative level, with the behaviour of 
σab(ε) and 
χab(ε)
predicted by the scaling approaches in the full-critical region [2–5].

The failure of equation (3) in the so-called high-reduced-temperature region, for ε � 10−1,
may be attributed to the fact that the conventional GGL approach strongly overestimates
the statistical weight of the thermal fluctuations with wavelengths of the order of ξab(0).
These short-wavelength effects on the thermal fluctuations were already observed in low-
temperature superconductors (LTSC) through measurements of both the fluctuation induced
diamagnetism [1, 7] and the paraconductivity [8]. In the case of the HTSC, the breakdown
of the GGL theory at high-reduced-temperatures was mainly studied until now through the
paraconductivity [9, 10]. These studies clearly show that these failures cannot be appreciably
mitigated by introducing a momentum cut-off in the fluctuation spectrum, i.e. by imposing in
the GGL approach the condition

k2 < c ξ−2
ab (0) (4)

where k is the momentum (in units of h̄) of each fluctuating mode, !k, and c is a constant
(temperature independent) cut-off amplitude close to 1. However, it was recently proposed [10]
that these difficulties in the paraconductivity may be eliminated if, instead of a momentum
cut-off, a total-energy cut-off is imposed in the 2D-limit by (in units of h̄2/2m∗, where m∗ is
the effective mass of the Cooper pairs)

[k2 + ξ−2
ab (ε)] < c ξ

−2
ab (0). (5)

As already stressed in [10], this total-energy cut-off may be easily justified by taking
into account that the probability of each fluctuating mode is controlled by its total energy
[k2 + ξ−2

ab (ε)], and not only by its momentum [11]3. By using the mean-field reduced-
temperature dependence of the coherence length, ξab(ε) = ξab(0)ε−1/2, equation (5) may
be rewritten as k2 < (c− ε)ξ−2

ab (0). We see, therefore, that for ε � c, the total-energy cut-off
reduces to the conventional momentum cut-off. Nevertheless, the differences between both
cut-off conditions may be very important at high-reduced-temperatures, when ε becomes of
the order of c.

The central aim of this paper is to extend these results on the cut-off effects at high-reduced-
temperatures to the relationship between the in-plane paraconductivity and the fluctuation
induced diamagnetism in layered HTSC, i.e. to calculate the modifications that the momentum
cut-off and the total-energy cut-off conditions may introduce in equation (3). Then, we
will briefly compare these theoretical results with recent measurements in the high-reduced-
temperature region in optimally doped YBa2Cu3O7−δ (Y-123) samples. For simplicity, our

3 A total-energy cut-off was already suggested by Patton and coworkers and by Nam when analysing in terms of a
microscopic approach the fluctuation induced diamagnetism at high applied magnetic fields in LTSC.
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calculations are going to be centred in single-layered superconductors. However, they may be
easily extended to multilayered superconductors in various important limit situations as, for
instance, when the Josephson coupling strength between adjacent superconducting layers are
similar.

2. Theory

2.1. Paraconductivity under different cut-off conditions

Our starting point to calculate the paraconductivity under different cut-off conditions on the
grounds of the phenomenological GGL approach is the relationship between
σab(ε) and the
momentum of the fluctuating modes. Such a relationship was calculated for the first time
by Schmidt for bulk superconductors [13], and it may be straightforwardly extended to the
layered case by changing the fluctuation energy in the z-direction, ξ 2

c (0)k
2
z (where kz is the

z-momentum of the fluctuation modes), by BLD[1 − cos(kzs)]/2 with |kz| � π/s [14]. The
resulting expression is


σab(ε) = e2ξ 4
ab(0)

8πh̄

∫
dkz

∫
dkxy

k3
xy{

ε + BLD[1 − cos(kzs)]/2 + ξ 2
ab(0)k

2
xy

}3 (6)

where kxy is the modulus of the in-plane momentum of the fluctuation modes. Equation (6)
is general and the in-plane paraconductivity for any cut-off criterion may be obtained by
simply imposing the corresponding upper limits on the k-integrals. To calculate 
σab(ε)
under a momentum cut-off, we note first that since the z-spectrum of the fluctuations is already
modulated through −π/s � kz � π/s, the inclusion of a momentum cut-off in this direction
is not necessary. For Y-123, this is a correct approach because the effective periodicity is
s = 5.9 Å, whereas ξc(0) � 1.1 Å and, therefore, the condition |kz| � π/s is stronger than
k2
z < cξ

−2
c (0) (if c � 1, see below). So, equation (4) becomes

k2
xy < c ξ

−2
ab (0) (7)

and the in-plane paraconductivity under the momentum cut-off criterion,
σab(ε, c)M, is then
found to be


σab(ε, c)M = e2

16h̄s

{
1

ε

(
1 +

BLD

ε

)−1/2

− c(c + ε + BLD/2)

[(c + ε + BLD)(c + ε)]3/2

− 1

ε + c

(
1 +

BLD

ε + c

)−1/2}
. (8)

This expression has two interesting asymptotic limits: the conventional LD in-plane
paraconductivity, equation (1) withNe = 1, which is recovered by imposing ε, BLD � c, and
the 2D-limit of the paraconductivity under a momentum cut-off which may be obtained by
imposing BLD � ε (we find again the
σab(ε, c)M expression first obtained for this 2D-limit
by Gauzzi and Pavuna [9]).

To obtain from equation (6) the in-plane paraconductivity under a total-energy cut-off,

σab(ε, c)E , we must first note that the total-energy of the fluctuation modes is given by [2, 3]

E(!k) = k2
xy + ξ−2

ab (0)[ε + BLD(1 − cos(kzs))/2]. (9)

Therefore, the total-energy cut-off limits the in-plane momentum of the fluctuations through,

k2
xy < [c − ε − BLD(1 − cos(kzs))/2] ξ−2

ab (0) (10)
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whereas kz is restricted, as in the case of the momentum cut-off, to the interval −π/s � kz �
π/s. By introducing these limits of integration in equation (6) we obtain,


σab(ε, c)E = e2

16h̄s

[
1

ε

(
1 +

BLD

ε

)−1/2

− 2

c
+
ε + BLD/2

c2

]
. (11)

Here again, the LD-limit (equation (1) with Ne = 1) can be recovered by simply imposing
ε, BLD � c,whereas the 2D-limit corresponds toBLD � ε. Other details of these calculations
are going to be published elsewhere [10].

2.2. Fluctuation induced diamagnetism under different cut-off conditions

The simplest way to obtain
χab under both cut-off conditions in the LD scenario is to start by
doing the calculations in the Prange-regime (i.e. under a finite magnetic field [1, 7]) and then
going to the Schmidt-limit. In doing such a calculation, our starting point will be the well known
divergent expression for the fluctuational part of the free energy per unit of volume [15, 16],

〈
F(ε, h)〉 = kBT

8π2ξab(0)2
2h

∞∑
n=0

∫ π/s

−π/s
dkz

[
ln

(
n +

ε + h + wkz
2h

)
+ ln(2h)

− ln

(
kBT

2a0

)]
(12)

where a0 is the so-called Ginzburg–Landau normalization constant and n = 0, 1 . . . is the
Landau-level index. This arises because in the presence of H the in-plane momentum
components of the GGL-spectrum, kx and ky , are no longer good quantum numbers
simultaneously and so k2

xy must be replaced by

k2
xy → 4eµ0H

h̄

(
n +

1

2

)
. (13)

The momentum and total-energy cut-off lead to an upper limit, nc, in the sum over the Landau
levels in equation (12) which depends on the particular cut-off condition. In the case of the
momentum cut-off, by combining equations (7) and (13) we obtain

nc = c

2h
− 1. (14)

The fluctuation induced diamagnetism for finite fields under a momentum cut-off may be
then obtained by imposing this upper limit in the sum of equation (12) and by using

χab(ε, h) ≡ −(Hµ0Hc2(0))−1∂〈
F(ε, h)〉/∂h. This gives


χab(ε, h, c)M = kBT

2πφ0H

∫ π/s

−π/s
dkz

{
ln,

(
ε + h + wkz + c

2h

)
− ln,

(
ε + h + wkz

2h

)

−ε + wkz + c

2h
ψ

(
ε + h + wkz + c

2h

)
+
ε + wkz

2h
ψ

(
ε + h + wkz

2h

)
+
c

2h

}
(15)

where, andψ are, respectively, the Gamma and Digamma functions. The fluctuation induced
diamagnetism in the Schmidt-limit and under a momentum cut-off may be now obtained from
equation (15) by imposing h� ε, c, BLD:


χab(ε, c)M

T
= πµ0kBξ

2
ab(0)

3φ2
0s

[
1

ε

(
1 +

BLD

ε

)−1/2

− 1

ε + c

(
1 +

BLD

ε + c

)−1/2
]
. (16)

Note that the Schmidt-limit without cut-off and for single-layered superconductors
(equation (2) with Ne = 1) may be recovered by applying ε, BLD � c in the above equation.
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Also note that for BLD = 0 (i.e. in the 2D-limit) equation (15) reduces to the expression
proposed to analyse the fluctuation induced diamagnetism well inside the finite magnetic field
regime in a La1.9Sr0.1CuO4 superconductor [17].

In the case of the total-energy cut-off, by combining equations (10) and (13) we found

nc = 1

2h

[
c − ε − BLD

2

[
1 − cos (kzs)

] ]
− 1. (17)

So, following the procedure described above, the fluctuation induced diamagnetism at finite
applied magnetic fields under a total-energy cut-off is found to be,


χab(ε, h, c)E = kBT

2πφ0H

∫ π/s

−π/s
dkz

{
− c

2h
ψ

(
h + cE

2h

)
− ln,

(
ε + h + wkz

2h

)

+ ln,

(
h + c

2h

)
+
ε + wkz

2h
ψ

(
ε + h + wkz

2h

)
+
c − ε − wkz

2h

}
. (18)

Finally, by applying h� ε, c, BLD the above equation simplifies to


χab(ε, c)E

T
= πµ0kBξ

2
ab(0)

3φ2
0s

[
1

ε

(
1 +

BLD

ε

)−1/2

− 1

c

]
(19)

which corresponds to 
χab(ε) in the Schmidt-limit and under a total-energy cut-off. Here
again, equation (2) (with Ne = 1) is recovered by simply imposing ε, BLD � c.

2.3. The ratio 
χab(ε)/(T
σab(ε)) under different cut-off conditions

The ratio 
χab(ε)/(T
σab(ε)) in layered superconductors (and in the low-magnetic-field
limit) under different cut-off conditions may now be directly obtained by using the expressions
calculated above. For instance, in the case of a total-energy cut-off, we obtain


χab(ε, c)E

T
σab(ε, c)E
= 2.79 × 105ξ 2

ab(0)

{
1 + (c − ε − BLD/2)

×
(
c2

ε

(
1 +

BLD

ε

)−1/2

− 2c + ε + BLD/2

)−1}
. (20)

Note that by imposing ε, BLD � c in the above equation we recover equation (3). Moreover,
as we are interested on the cut-off effects in the high-reduced-temperature region, this type of
relationship may be strongly simplified by assuming BLD � ε, c. This leads (in MKSA units)
to


χab(ε, c)M

T
σab(ε, c)M
= 2.79 × 105ξ 2

ab(0)

(
1 +

ε

c

)
(21)

and

χab(ε, c)E

T
σab(ε, c)E
= 2.79 × 105ξ 2

ab(0)

(
1 +

ε

c − ε
)

(22)

for, respectively, a momentum cut-off and a total-energy cut-off. As in the case of equation (3),
these two expressions do not depend on any effective periodicity length. Also note that in the
absence of any cut-off condition (i.e. with c → ∞) or in the low-reduced-temperature region
(i.e. ε � c), both expressions reduce to equation (3). In contrast, strong differences with
equation (3) appear in the high-reduced-temperature region, i.e. when ε becomes of the
order of c, mainly under a total-energy cut-off. In this last case, the ratio between 
χab(ε)
and 
σab(ε) diverges when ε becomes of the order of c. Let us finally stress that these
two expressions apply with all generality to multilayered strongly anisotropic HTSC, whose
thermal fluctuations are in the 2D-limit in the accessible ε-region.
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3. Application to Y-123

As an example of the usefulness of the above results, in figure 1 we summarize the comparison
between the theoretical
χab(ε)/(T
σab(ε)) predictions under different cut-off conditions and
the experimental results obtained in almost optimally doped Y-123 superconductors. In these
bilayered superconductors, which are moderately anisotropic, the thermal fluctuations behave
within the 2D- and the 3D-limit. However, the Josephson coupling between the different
neighbour layers are expected to be similar to each other [2]. Therefore, we may use the
theoretical results for single-layered superconductors, but with s/2 instead of s as an effective
periodicity length. A more detailed account of these experiments is going to be published
elsewhere. Let us note here that the error bars in figure 1 are mainly due to the uncertainties in
the estimation of the normal (or background) contributions to the measuredχab(T ) and σab(T ).
To correctly analyse the high-ε region, such background contributions must be estimated by
extrapolating through the transition the χab(T ) and the σab(T ) data measured as far as possible
from Tc0. So, these data have been obtained by using backgrounds estimated above T � 225 K
(which corresponds to ε � 0.9).

0

2

4

6

8

10

ln(T/T
C0

)

7 x 10-1∆
χ a

b / 
T ∆

σ a
b (

10
-1

3 Ω
 m

 K
-1

)

2 x 10-2 10-1

GGL without cutoff

GGL with momentum cutoff
GGL with energy cutoff

Figure 1. Comparison in the accessible ε-region above 2×10−2 between the
χab(ε)/(T
σab(ε))
ratio measured in YBa2Cu3O7−δ samples and the theoretical ratio obtained by imposing
different cut-off conditions to the conventional Gaussian–Ginzburg–Landau approach for layered
superconductors . These results illustrate how the GGL approach extends its validity to the high-ε
(for ε above 10−1) region when a total-energy cut-off is included in the fluctuation spectrum.

The dotted line in figure 1 corresponds to the GGL theory without any cut-off
(equation (3)). As expected [2–5], the agreement between equation (3) and the data is excellent
in the region 2 × 10−1 � ε � 10−1 and it leads to ξab(0) = 11 Å. However, it can be clearly
seen that the experimental data do not follow such a constant behaviour at higher temperatures.
The solid line in this figure corresponds to the best fit of equation (20) to the experimental data
in the ε-region 2 × 10−2 � ε � 5 × 10−1 with ξab(0), ξc(0), and c as free parameters. As can
be seen, the agreement is excellent in almost the entire ε-region and it leads to ξab(0) � 10 Å,
ξc(0) � 1.1 Å (which are well within the accepted values [2]) and c = 0.7, which is comparable
with the values of c that we have found recently when analysing the fluctuation induced
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diamagnetism in the high magnetic field regime in another cuprate superconductor [17]. The
dashed line corresponds to the GGL theory with a momentum cut-off, i.e. to equation (16)
divided by equation (8), with again ξab(0) � 10 Å, ξc(0) � 1.1 Å and c = 0.7. The
disagreement for ε � 0.2 is well beyond the experimental uncertainties, and these differences
at high-reduced-temperatures cannot be mitigated by using other values of ξab(0), ξc(0) and c
without breaking the good agreement for 2×10−2 � ε � 10−1. These results strongly suggest,
therefore, that to overcome the difficulties associated with the short-wavelength fluctuations,
which mainly manifest in the high-reduced-temperature region (ε � 0.1), one must introduce
in the GGL approach a total-energy cut-off, instead of the conventional momentum cut-off
used until now to analyse the thermal fluctuations in LTSC [8] and HTSC [9].

4. Conclusions

In conclusion, to take into account the presence of the short-wavelength effects that
appear at high-reduced-temperatures, the in-plane paraconductivity, the fluctuation induced
diamagnetism, and the relationship between both observables have been calculated on
the grounds of the Gaussian–Ginzburg–Landau approach for layered superconductors by
imposing, for the first time, a momentum and a total-energy cut-off condition. Although the
central motivation of this paper was the presentation of these theoretical results, we have also
summarized here a preliminary comparison with the experimental 
χab(ε)/(T
σab(ε)) data
recently obtained in YBa2Cu3O7−δ samples. This comparison strongly suggests the adequacy
of the total-energy cut-off condition to explain the behaviour of these fluctuation effects in the
high-reduced-temperature region (ε � 0.1). This total energy is obtained by adding the kinetic
energy to the confinement energy of the Cooper pairs formation. A more thorough comparison
of these theoretical results with different experimental data in YBa2Cu3O7−δ superconductors,
and those we are now measuring in other HTSC and LTSC, will be presented elsewhere.
However, the present results already clearly suggest that the calculations presented here open a
promising way for the understanding, at a phenomenological level, of the thermal fluctuations of
Cooper pairs in superconductors in the ε-region not too close to the superconducting transition,
including the high-reduced-temperature region.
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